Jeremy Binagia

(409) 749-9240 • jbinagia@stanford.edu • linkedin.com/in/jeremy-binagia • github.com/jbinagia • jeremy-binagia.com

ABOUT ME

Engineer with an expertise in computational modeling and high-performance computing interested in solving complex problems using applied mathematics, numerical simulation, and machine learning

EDUCATION

Stanford University, Ph.D. in Chemical Engineering (4.068 GPA)	Expected June 2022
Stanford University, M.S. in Chemical Engineering (4.068 GPA)	2019
The University of Texas at Austin, B.S. in Chemical Engineering with Highest Honors (4.00 GPA)	2016

RESEARCH EXPERIENCE	
Graduate Researcher, Advisor: Prof. Eric S.G. Shaqfeh, Stanford University	2016 – Present
 Currently leading a multi-disciplinary team effort with researchers in mechanical engineering to bot simulate a robotic "swimming rheometer" that can be used to infer properties of complex biofluids Designs and writes algorithms from scratch in Fortran to simulate problems involving fluid-structure Optimizes and debugs object-oriented programs and leverages distributed parallel computing via N Collaborates with others to design, test, and enhance the research group's multiphysics simulation Visualizes and analyzes large computational fluid dynamics (CFD) datasets using Python, Matlab, Created first fully resolved 3D simulation of microorganisms swimming in complex biological fluids Effectively communicates results to technical and non-technical audiences alike through oral preservations scientific conferences as well as in writing via multiple peer-reviewed publications 	h create and interaction /IPI software and Tecplot entations at
 High-Energy-Density Physics Intern, Mentor: Dr. Luc Peterson, Lawrence Livermore National Laboratory Conducted radiation hydrodynamics simulations to assess the impact of ablator microstructure on instabilities within inertial confinement fusion (ICF) experiments conducted at the National Ignition 	/ 2020 seeding fluid Facility (NIF)
 Undergraduate Researcher, Advisor: Prof. Roger T. Bonnecaze, The University of Texas at Austin Prototyped a novel nano-patterning method involving selective reduction of a metal oxide film using 	2015 – 2016 g COMSOL
 Undergraduate Researcher, Advisor: Prof. Doraiswami Ramkrishna, Purdue Univesity Modeled the signaling network bacterial populations use to regulate the transfer of antibiotic resistance through a coupled system of partial differential equations (PDEs) Performed stochastic simulations of various chemical systems using a parallel tau-leaping algorithm 	2014 m
TEACHING & MENTORING EXPERIENCE	
 Teaching Assistant, Applied Math. in the Chemical and Biological Sciences, Stanford University Planned and led weekly recitation sessions, gave assignment feedback, and provided final project 	2017 – 2018
guidance to 30+ students	

Awarded a 2019 Chemical Engineering Outstanding Teaching Assistant Award

Graduate Mentor, Stanford University

Taught a visiting undergraduate student the fundamentals of biological fluid dynamics and how to setup, run, and analyze computational fluid dynamics simulations as part of the Stanford Amgen Scholars Program

2019

SKILLS

•

Languages (<u>experienced</u> & familiar):	Python, C++, MATLAB, Fortran, Lua, R, Mathematica
Software (<u>experienced</u> & familiar):	Linux, Git, Pandas, NumPy, MPI, CUDA, COMSOL, PyTorch, TensorFlow, OpenMP
Theory	Fluid mechanics, Transport phenomena, Parallel computing, Machine learning

SELECTED AWARDS & HONORS

Gerald J. Liebermann Fellowship (awarded to ~13 outstanding Stanford PhD students annually)	2021 – 2022
National Science Foundation (NSF) Graduate Research Fellowship (fund 3 years, valued at \$140,000)	2016 – 2019
National Defense Science & Engineering Graduate (NDSEG) Fellowship Awardee (5-10% acceptance rate)	2016

LEADERSHIP & SERVICE

Chair, Dean's Graduate Student Advisory Council (DGSAC)	2021 – 2022
Program Coordinator, Science Teaching Through Art (STAR)	2019 – 2021
Instructor, Stanford Prison Education Project (SPEP)	2019 – 2021

MACHINE LEARNING PROJECTS

- Teaching Microswimmers How to Navigate via Reinforcement Learning (github.com/jbinagia/cme216-final-project)
 2020
 - Trained theoretical microswimmers (e.g. microrobots) to navigate a complex flow field via reinforcement learning

Parallel Neural Network Training using Multiple GPUs (github.com/jbinagia/cme213-final-project) 2020

• Designed a parallel algorithm to accelerate neural network training on multiple GPUs via CUDA and MPI

Efficient Sampling of Equilibrium States Using Artificial Neural Networks (github.com/jbinagia/CS-230-Final-Project) 2019

Implemented a deep neural network in PyTorch that can efficiently find low energy configurations of molecules

Analyzing and Predicting Treatment Effects for Schizophrenia Patients (github.com/jbinagia/stats202-final-project) 2019

• Used hypothesis testing and unsupervised learning (e.g. clustering, PCA) in R to determine drug effectiveness

SELECTED GRADUATE COURSEWORK

Fluid mechanics:
Computational science:Microhydrodynamics, Suspension mechanics, Flow instability, Physics of microfluidics
Algorithmic analysis, Parallel computing, Advanced software development, Numerical
methods, Linear algebra, Finite element analysis, Cardiovascular computational modeling
Data mining and analysis, Deep learning, Machine learning in computational engineering

PUBLICATIONS

- 1. **Binagia**, J.P.*, Kroo, L.*, Eckman, N., Prakash, M., & Shaqfeh, E. S. G. A swimming rheometer: self-propulsion of a freely-suspended, axisymmetric swimmer by viscoelastic normal stresses. *In preparation.*
- 2. **Binagia, J. P.,** & Shaqfeh, E. S. G. Self-propulsion of a freely suspended swimmer by a swirling tail in a viscoelastic fluid. *Physical Review Fluids* (2021).
 - Selected as an Editor's Suggestion and featured in a Synopsis article in the magazine "Physics"
- 3. Housiadas, K. D., **Binagia, J. P.**, & Shaqfeh, E. S. G. Squirmers with swirl in viscoelastic fluids at low Weissenberg number. *Journal of Fluid Mechanics* (2021).
- 4. **Binagia, J. P.**, Phoa, A., Housiadas, K. D. & Shaqfeh, E. S. G. Swimming with swirl in a viscoelastic fluid. *Journal* of Fluid Mechanics (2020).
- Binagia, J. P.*, Guido, C. J.*, Shaqfeh, E. S. G. Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids. *Soft Matter* (2019).
- 6. Shu, C.-C., Tran, V., **Binagia, J.**, Ramkrishna, D. On speeding up stochastic simulations by parallelization of random number generation. *Chemical Engineering Science* (2015).

PATENTS

- Shaqfeh, E. S. G., Prakash, M., Kroo, L., Binagia, J., A mechanical swimmer that acts a rheometer (Filed Aug. 6th, 2021). Provisional Patent App. No. 63/230448.
- Bonnecaze, R., Chopra, M., Chopra, S., Binagia, J., Ekerdt, J., & Edmondson, B. Patterning metal regions on metal oxide films/metal films by selective reduction/oxidation using localized thermal heating (2020). U.S. Patent App. No. 16/467,927.

CONFERENCE ORAL PRESENTATIONS

- 1. **Binagia, J. P.,** & Shaqfeh, E. S. G. Self-propulsion of a freely suspended swimmer by a swirling tail in a viscoelastic fluid. *AIChE Annual Meeting 2021.* Boston, MA (Nov. 2021).
- 2. **Binagia, J. P.,** Kroo, L., Prakash, M., & Shaqfeh, E. S. G. Self-propulsion of a freely suspended swimmer by a swirling tail in a viscoelastic fluid. *Society of Rheology Annual Meeting.* Bangor, ME (Oct. 2021).
- 3. Binagia, J. P., Phoa, A., Housiadis, K., & Shaqfeh, E. S. G. The impact of azimuthal flow on swimming dynamics in elastic fluids. 18th International Congress on Rheology (ICR). Virtual Meeting (Dec. 2020).
- 4. **Binagia**, J. P., Phoa, A., Housiadis, K., & Shaqfeh, E. S. G. Swimming with swirl at low Weissenberg number. *APS Division of Fluid Dynamics*. Virtual Meeting (Nov. 2020).
- 5. **Binagia, J. P.**, & Shaqfeh, E. S. G. Swimming with swirl in a viscoelastic fluid. *AIChE Annual Meeting 2020.* Virtual Meeting (Nov. 2020). Video link: https://youtu.be/STR7URrmcPc
- 6. **Binagia, J. P.**, & Shaqfeh, E. S. G. Swimming with swirl in a viscoelastic fluid. *Society of Engineering Science*. Virtual Meeting (Sep. 2020).
- 7. **Binagia, J. P.**, Phoa, A., Housiadis, K., & Shaqfeh, E. S. G. How azimuthal swirl impacts swimming kinematics in a viscoelastic fluid. *APS Division of Fluid Dynamics*. Seattle, WA (2019, Nov).
- 8. **Binagia, J. P.**, Guido, C. J., & Shaqfeh, E. S. G. Simulating the swimming motion of *C. elegans* and amoeboids in viscoelastic fluids via the immersed boundary method. *SIAM Conference on Computational Science and Engineering*. Spokane, WA (Feb. 2019).
- * These authors contributed equally