Squirmers with swirl at low Weissenberg number

Abstract

We investigate aspects of the spherical squirmer model employing both large-scale numerical simulations and asymptotic methods when the squirmer is placed in weakly elastic fluids. The fluids are modelled by differential equations, including the upper-convected Maxwell (UCM)/Oldroyd-B, finite-extensibility nonlinear elastic model with Peterlin approximation (FENE-P) and Giesekus models. The squirmer model we examine is characterized by two dimensionless parameters related to the fluid velocity at the surface of the micro-swimmer: the slip parameter ξ and the swirl parameter ζ. We show that, for swimming in UCM/Oldroyd-B fluids, the elastic stress becomes singular at a critical Weissenberg number, Wi, that depends only on ξ. This singularity for the UCM/Oldroyd-B models is independent of the domain exterior to the swimmer, or any other forces considered in the momentum balance for the fluid – we believe that this is the first time such a singularity has been explicitly demonstrated. Moreover, we show that the behaviour of the solution at the poles is purely extensional in character and is the primary reason for the singularity in the Oldroyd-B model. When the Giesekus or the FENE-P models are utilized, the singularity is removed. We also investigate the mechanism behind the speed and rotation rate enhancement associated with the addition of swirl in the swimmer’s gait. We demonstrate that, for all models, the speed is enhanced by swirl, but the mechanism of enhancement depends intrinsically on the rheological model employed. Special attention is paid to the propulsive role of the pressure and elucidated upon. We also study the region of convergence of the perturbation solutions in terms of Wi. When techniques that accelerate the convergence of series are applied, transformed solutions are derived that are in very good agreement with the results obtained by simulations. Finally, both the analytical and numerical results clearly indicate that the low-Wi region is more important than one would expect and demonstrate all the major phenomena observed when swimming with swirl in a viscoelastic fluid.

Publication
Journal of Fluid Mechanics

Related